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We give a definition of locality in quantum optics based upon Bell's work,
and show that locality has been violated in no experiment performed up to
now. We argue that the interpretation of the Wigner function as a probability
density gives a very attractive local realistic picture of quantum optics
provided that this function is nonnegative. We conjecture that this is the
case for all states which can be realized in the laboratory. In particular, we
believe that the usual representation of "single photon states" by a Fock
state of the Hilbert space is not correct and that a more physical, although
less simple mathematically, representation involves density matrices. We
study in some detail the experiment showing anticorrelation after a beam
splitter and prove that it naturally involves a positive Wigner function. Our
(quantum) predictions for this experiment disagree with the ones reported in
the literature.

1. What is locality ?

The purpose of this paper is to investigate the conditions for the violation of
locality in quantum optics. We shall show that these conditions are rather
stringent and have not been fulfilled in those experiments where violations
of locality have been claimed.

The first problem is that several, quite different, meanings have been given
to the word "locality" (or "nonlocal'ity"). In fact, there are people claiming
that quantum mechanics never predicts nonlocality because it forbids
sending signals at superluminal velocity. On the other hand, some authors
include auxiliary hypotheses, related to the Clauser et al. [1]
"no-enhancement" assumption, as a part of the concept of locality. With such
a definition there are a lot of locality violations in the predictions of
quantum optics. Here we shall use something intermediate between these
extremes. We shall define locality in the following form based on Bell's
work.

We should consider an EPR (Einstein-Podolsky-Rosen) experiment where
some correlation is measured between properties, like spin, of two
separated particles. Locality is satisfied _f single probabilities ( p_, pA)
and coincidence probabilities (P_4) can be obtained from a local"hidden
variables (LHV) model, i. e., if" there are hidden variables, collectively
represented by X, which determine the above probabilities by means of
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integrals of the form

P3 (el) = j" W(;_) P3(_,el) d _,, P4 (e2) = .[ W(_) P4(_,,e2) d ;L,

P34 (el,e2) = J"w(_) P3(Lel) P4(Le 2) d _.,

the functions P3, P4 and W fulfilling the conditions

Normalization: j" W(_,) d _ = ]

Positivity: W(X) > 0, P3(LB 1) > 0, P4(Le2) > 0

Boundedness: P3(X,,el) < 1 , P4(Le2) < 1.

(1)

(2)

(3)

(4)

(5)

2. How to test locality ?

A test of locality involves performing an experiment where quantum optics
predicts the violation of some genuine Bell inequality. Genuine means that
the inequality can be derived from the conditions (1) to (5) alone, without
adding auxiliary assumptions like "no-enhancement" :

P3(_,01) -< PI(_-), P4(Z,e2) < P2(Z) not assumed. (6)

Here PI(Z)and P2(Z) mean detection probabilities when no selector (e.g.
polarizer) is inserte_l between the source and the detector.

Then, we stress that it is impossible to test locality in experiments
measuring coincidences alone. In fact, it has been possible to construct a
general LHV model giving the same coincidence probabilities as quantum
optics for every EPR-type experiment in which only coincidences are
measured [3]. Genuine Bell inequalities, therefore, should necessarily involve
both singles and coincidences. In this respect, we do not agree with the usual
statement that there are loopholes in the experiments to disprove LHV
theories, because the word "loophole" suggests that the experiments have
only practical difficulties. The fact is that these experiments have not been
desiqned to test genuine Bell inequaltities, but inequalities involving
addit=onal assumptions, like (6). Therefore they can only refute restricted
families of LHV models, namely those fulfilling those assumptions.

We also point out that a necessary condition [4] for the violation of locality
is the existence of an entangled quantum state, i.e., a nonfactorable
wavefunction. There are some experiments, where violations of locality have
been claimed, which do not even fulfil this condition (e.g. the state vector
(2) of Ref. 5 is factorable).

3. Single photon interferometry

The simplest "entangled state" in quantum optics appears in exper!men_s of
interference of a single photon (see Fig. 1) [6]. In an experiment oT mis cass,
a photon v 2 is sent to a beam splitter (represented by a dashed line in Fig.l).
The state of the radiation field after the beam splitter is
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Iv> = 1/V2{ I o> I 1> + I 1> I o> } = 1/V2{ ar + + at+ } I o> I o>, (7)

which exhibits entanglement between a "single photon state" and the
"vacuum state". In the anticorrelation experiment, represented in Fig. 1, no
coincidences are predicted between the detectors .PM r and PM t, which seems
to prove that the photon goes undivided into one cnanneu.

PM i

_Q2 // PM_

tll

FIG. 1. Triggered experiment [6]. Atoms in the source S produce pairs of
photons. The detection of the first photon of the cascade produces a ,gate
during which the photomultipliers, PM t and PM r, are active. The probabihties
of the detection during the gate are Pt = Nt/N1 ard Pr = Nr/N1 for singles and
Pc = Nc/N1 for coincidences, Nj being the detect on nttes.

In the recombination experiment the two beams, produced at the beam
sp.litter, are recombined at another beam splitter where they arrive with a
dnfferent phase ( which may be changed by means of the phase shifter) and
the detection probability at one of the outgoing channels depends on that
phase difference. The standard way t_o "exp=am this phenomenon is to say
that there are two possible routes for the photon and that, according to
quantum theory, "possibilities interfere". However, this is not a scientific
explanation (at most, it may be considered as a poetic sentence or a
practical rule}. Later on we shall see how the phenomenon may be really
explained using the Wigner representation of quantum optics.

4. The Wigner representation as a local hidden variables model

In order to understand the meaning of entanolement in quantum optics, we
calculate the Wigner function of (7) and we oDtain

W = N ( 2 I st + O_r12 -1 ) exp( - 2 I at 12- 2 I CXr12 ), N = normalization (8)

This function does not factorize, but this presents no problem; we may
interpret W as a joint probability distribution for the amplitudes a t and czr.
We see that, in the Wlgner representation, entanglement is just correlation,
an obviously classical concept. Of course, there is another very well known
problem, namely that (8) is not positive definite, as a probability should be.
We shall return to this difficulty in detail later on, but for the moment let
us ignore it proceed as if W were a genuine (non-negative definite)
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probability.

In the Wigner representation fields propagate like in classical optics. In
fact, the equations involving creation or annihilation operators become, in
the Wigner representation, similar equations between field amplitudes:

at +_- 1/_/2 (a 1+ +iao +) -_ Et = 1/_/2 (E 1 +i Eo),

ar += 1/_/2 (ao + +ia 1+) --, E r-- 1/_/2 (E o+i E1). (9)

The picture that emerges is that of light as pure (Maxwellian) waves, but
with a real zeropoint (background) radiation. Then, in the single photon
interference experiment there is always "something" in both channels,
because both e_t_= 0 and _r _ 0.

Anticorrelation can be understood as a result of the interference between
signal and zeropoint at the beam splitter. In fact, as shown by Eq. (9), the
amplitudes of the fields in the outgoing channels contain a part coming from
the signal (channel 1) and a part coming from the zeropoint (channel 0,
arrow from below in Fig. 1). The superposition of amplitudes at channels r
and t should produce interference, which will depend on the relative phases
of the incoming channels. However, in any case the interference will be
constructive in one channel and destructive in the other one, by conservation
of energy. Now, quantum optics predicts that detectors are only sensitive to
the intensity above the zeropoint level, which explains why there is
detection only in one channel. Detection sensitive only to the intensity above
the zeropoint level follows from the the normal ordering prescription of
quantum optics. In the Wigner representation normal ordering becomes a
subtraction of the zeropoint, as shown by the equality

a+a -- 1/2(a+a + a a +) - 1/2 _ I o_ 12- 1/2 (10)

In this way we have a transparent picture of the anticorrelation, without any
need of "photons". The explanation of the interference in the recombination
experiment is rather easy, because we are dealing with a purely wave theory
of radiation. Interference is produced between (correlated)signal and
zeropoint at the second beam splitter. What we want to emphasize is that
the only problem of the Wigner function is the lack of positivity, not
entanglement. If the Wigner function of an entangled state is nonclassical, it
is not because it contains correlation, but because it is not positive definite.

5. The meaning of enhancement and other nonclassical effects

Now it is easy to understand why "no-enhancement" (see Eq. (6)) is violated.
In fact from Eq. (7) it follows that

It= 1/2 [I 1 + Io + 2 Re(E 1 Eo )], Ij--I Ejl 2, (11)

and this intensity may be greater than the intensity 1.1 of the incoming
signal, if the relative phase of E 1 and Eo is zero. A similar phenomenon
happens at a polarizer. It is enough to assume that the detection probability
increases monotonically with the incoming intensity to explain the origin of
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"enhancement".

The existence of a real zeropoint electromagnetic radiation is, therefore,
crucial for the explanation of enhancement. On the other hand, all LHV
theories in which "no-enhancement" holds true have been refuted by the
performed experimental tests of Bell s inequalities [7-9]. Consequently we
may conlcude that LHV theories not involving zeropoint field are the ones
actually refuted by these experiements. If one is fond of LHV theories, one
should therefore look for theories involving a real zeropoint. It is very good
that the Wigner represention of quantum optics, with the probabilistic
interpretation above suggested, belongs to this class.

In the wave interpretation of quantum optics that we are suggesting (taking
a positive Wigner function as a probability distribution) the interpretation
of the nonclassical states of light is also transparent. According the usual
definition, "nonclassical states of light" are those not having a positive
Glauber-Sudarshan (P) representation. That is, for nonclassical states, the
P-representation either does not exist or it is not non-negative definite. In
contrast, any classical state of light has a positive P-representation,
P({o_i}), which may be interpreted as a probability distribut.ion .of the
amplitudes of the normal modes of the radiation. If we assume that there is
a zeropoint radiation having a probability distribution Wo({13i} ), in addition
to the classical radiation, the question arises: What Js t'he probability
distribution of the full radiation present?. The answer is obvious, in every
normal mode the total amplitude, 7i, will be the sum of both amplitudes, i.e.

yj = o_j + 13j. Then the probability distribution of the full radiation will be

W({Tj}) = .f P({_j}) Wo({ 7j-_j,}) d2N_ (12)

This is just the Wigner function, which is known to be related to the
P-function by Eq.(12). Therefore, classical states of light are those where
the zeropoint is not modified; some additional radiation is added on top of
the zeropoint. Consequently, "nonclassical states" are those where the
zeropoint is modified.

6. Solution of the positivity problem

A very simple solution of the positivity problem, the problem that the
Wigner function is not positive definite for all quantum states of light, is to
sssume that only states with a .positive Wigner function may be
manufactured in the laboratory. That is, we assume that quantum states
with a negative Wigner function are iust mathematical constructions useful
as intermediate steps in some calculations. Two main objections may be put
to this assumption, namely that some of these forbidden states have been
actually produced, e.g. single photon states, and that there are other
representations in quantum optics, e.g. the Q -or positive P- representation,
which are always positive and therefore better candidates than the Wigner
function. We shall devote the remainder of thepaper to answering the first
objection. The answer to the second is that the Wigner function has a number
of properties that make it the only good candidate. To quote just one, it is
the only phase-space distribution which evolves according to a classical
Liouville equation for any Hamiltonian quadratic in the creation and
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annihilation operators. The Liouville equation corresponds to the classical
Hamiltonian obtained from the quantum one by first putting all operators in
symmetrical ordering (by using the standard commutation relations), and then
replacing the operator ai (ai + ) by the classical amplitude eq(o4 ). Then,
the amplitude "fi o_i* will' be' the canonical momentum conjOgatbd to the

coordinate o_j.

Now for the first objection. In the first place we point out that we do not
propose to interpret the Wigner function throughout quantum mechanics as a
probability distribution in phase space. For instance, we do not apply it to
the electrons in an atom. We make the proposal just for the electromagnetic
field. In contrast with what happens m particle quantum mechanics, in
quantum optics most of the states of the radiation have a positive Wigner
function. For instance, this is the case for the vacuum, the coherent states,
the chaotic state (thermal light) and even the squeezed states. Amongst the
usual states of light, pracbca/ly only Fock states (number states) have a
non-positive Wigner function. Then the question arises: can pure Fock states
really be produced in the laboratory?. What we conjecture is that Fock states
are never produced as pure states, always as mixtures having a positive
Wigner function. For instance, if we have a beam of "single-photon signals"
such that within a time window w the probability of a signal is p << 1, then
the state corresponding to the window is not the single photon state [ 1>, but
the mixture represented by the density matrix p=(1-p) lO><O|+pl 1>< 1 I.
The associated Wigner function is positive provided p < 1/2. If p > 1/2 the
probability of having more than one photon within the window becomes
relevant and again the Wigner function is positive, it may be argued that,
with some effort, it is possible to monitor the single photon signals in such
a way that the probabdity of having one in a time window is close to one
whilst the probability of having more than one is negligible. We shall return
to this later on.

7. Positivity of the Wigner function in parametric down conversion

There is a general argument showing that the Wigner function may be taken
as positive in all experiments involving parametric down conversion. These
experiments involve one or several nonlinear crystals where, in quantum
language, the process takes place of converting a single photon of frequency
con into two photons of frequencies o)1 and 0)2 = con-0)1. The quantum
H_.miltonian contains terms with an annihilation operator of the first type of
photons and two creation operators. However, in all practical calculations
the incoming beam (the pumping) is taken as classical, and the annihilation
operator is replaced by a classical amplitude. Consequently, the full
Hamiltonian becomes quadratic in the operators of creation and destruction
of photons.

Now, it is well known that the Wigner function evolves according to a
classical Liouville equation whenever the Hamiltonian is quadratic. On the
other hand, the Liouville equation preserves positivity, in the sense that if
the Wigner function is pos=tive at a time then it remains positive at any
later time. As the initial state (before switching on the pumping) is the
vacuum, whose Wigner function is positive, the Wigner function remains
positive forever. We should point out that the action of devices like lenses,
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mirrors, beam splitters, etc. is linear and, consequently, all of them
preserve the positivity of the Wigner function.

It is possible to argue that, strictly speaking, the Hamiltonian associated
with the nonlinear crystal is cubic rather than quadratic, and a cubic
Hamiltonian does not guarantee the positivity of the Wigner function. This is
true, but then the "nonclassical" effects due to negative values of the Wigner
function should be relevant in those experiments where a clear disagreement
is obtained with the (approximate) quantum predictions obtained using a
classical pumping. No experiment of this type has been performed to our
knowledge.

8. State of the beam produced in an atomic source

In the following we investigate the positivity of the Wigner function in
experiments involving photon beams produced by an atomic source. As a
typical example we consider the experiment by Grangier et al. [6],
represented in Fig. 1 where the authors claimed to have produced single
photon signals, which seems to imply negative Wigner functions.

For simplicity we consider atoms with two states: I g>. (ground) and I e>
(excited). If at time t=0 we have I e> I 0> (excited atom plus radiation
vacuum), then the evolution gives (to first order perturbation theory)

Iv(t)>= N {le> + Ig> A+(t)}l 0> ; A+(t) - T_.jcj(t) exp[-ikj.x ] aj + (1 3)

where N is a normalization constant, j labels the radiation mode and A+(t) is
the creation operator of a (localized, multimode) photon .

If we consider many atoms, which arrive at the source, are excited there (by
the action of a laser) and decay at times t1 , t2, ... t s, ..., we should represent
the atomic beam by the state vector

IV> = N F[s{ les> + Igs > A+(t-ts) }1 0> (14)

If the state of the outgoing atoms are not controlled, (14) is not the correct
representation of the physical situation. In fact, we must take the partial
trace of p =Ju/> <_1 over the atomic states, which leads to

p=N{ J0><01+Z; s[A+(t-ts) J0><0JA(t-ts) ]+

T-,s T-,r [A+(t-ts) A+(t-tr) [ 0> < 0J A (t-tr) A (t-ts) ] + ... } (15)

Furthermore, if the emission times are not controlled, we must average over
the times t 1, t2,...

After some algebra [11], we obtain that the final density matrix is

P chaotic = l-[j { T_,nj fijnj (1' + fij)-nj-1 Inj><njl } (16)

which represents chaotic light, no matter how weak is the beam. The average
photon number in mode j, fij, is related to the coefficient cj .Essential for
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the result (16) is to take into account the interference between "photons"
coming from different atoms.

It is interesting that the Wigner function of (16) is positive definite, a well
known property of chaotic light.

The quantum predictions for the correlation and recombination experiments
can be easily obtained. The recombination experiment shows interference
with 100% visibility, which is not strange because the state (16)
corresponds to "classical" light that can be treated by standard wave optics.
The correlation experiment gives for the ratio of the coincidence probability
to the product of singles:

(_--Pcoinc. (Pr Pt) -1 - 2 if detection window << lifetime of excited atom

(_ = Pcoinc. (Pr Pt) -1 = 1 if detection window >> lifetime of excited atom

For intermediate situations we get values of _ between 0 and 1. This result
can be also explained 'by classical optics, as is well known since the early

work of Brown-Twiss [10o]_ who showed experimentally the photon bunching
properties (i.e., e_ > 1 ) chaotic light.

9. "Single photon signals" in an atomic beam

The procedure used by Grangier et al. [6] in order to manufacture single
photon signals was to monitor the photons ,y detecting them in coincidence
with partner photon emitted by the atom in a cascade. Of course, our two
state model for the atom is no longer adequate because a cascade implies at
least three atomic states. However, it is still appropriate to represent the
state of the beam by I=q.(15) provided that, in addition to taking the partial
trace of the density matrix over the atomic states, we average over all
emission times except one, say to .

We get a "single photon signal" superimposed to the chaotic light, which may
be represented by the density matrix

Psingle photon = N { p chaotic + A+(t'-t0) P chaotic A(t't0) } (17)

The interesting result is that the Wigner function of (17) is positive.

A straightforward but lengthy calculation[l l] gives the quantum prediction
for the commented experiments. With the parameters of the actual
experiment [6] ( that is a coincidence window about twice the atomic
lifetime) we predict that, when the beam is very intense, the "single photon"
effect is lost and we get the asymptotic value _ _ 1.57 (pure chaotic light).
In the performed experiment[6] values _ > 1 are not observed because, in the
actual experimental conditions, the spacial coherence in the detector is
lost[12]. However, we think that rather modest improvements of the
apparatus will allow observing our prediction of interference between
photons emitted by different atoms[l 1].
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10. Discussion

We have shown that the interpretation of the Wigner function as a
probability distribution provides a very attractive local realistic view of
quantum optics. The main difficulty for this interpretation is the fact that
the Wigner function is not positive definite for some quantum states. We
conjecture that all states actually realizable in the laboratory have a
positive Wigner function. In particular we have shown that this is the case
for two typical situations where it is claimed that "single photon states"
are produced, namely parametric down conversion and light beams produced
by a (weak) atomic source. In the second case we argue that the correct
representation of the light beam is by means of a density matrix, rather than
a pure quantum state. We do not accept the so-called ignorance
interpretation of the density matrix, that is as a probability distribution on
the set of pure quantum states. On the contrary, we assume that most of the
pure quantum states are not physical states.

Even if the above conjecture is correct, and the Wigner function of all
physical states of light is nonnegative, some problems remain. We do not
understand yet the processes of emission and detection of light or, more
generally, the interaction of light with atoms. That is, we do not have a local
realistic theory of atoms. In particular, we do not claim to interpret the
Wigner function of the electrons in the atom as a probability distribution.
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